Experiments Beyond the Tonne-Scale: Background Challenges

Background Considerations "the Usual Suspects" but also some new players

- Natural occurring radioactive materials in detector apparatus
 - U/Th/K in detector materials or from contamination, radon daughter plate-out
- Always an issue Mostly solved Upcoming concerns

- Environmental γs
 - The lab environment, radon
- Prompt μ
- 2νββ
 - need energy resolution
- Long-lived cosmogenics
 - Exposure on Earth's surface
- Anthropomorphic activities
 - Fallout
- Neutrons from (α,n) , fission, or μ interactions
 - in situ produced activation products, (n,n') emissions
- Solar Neutrino Interactions

The usual suspects

- Natural Occurring Radioactive Materials
 - -Solution mostly understood, but hard to implement
 - Great progress has been made understanding materials and the U/Th contamination, purification
 - Elaborate QA/QC requirements
 - -Future purity levels greatly challenge assay capabilities
 - Some materials require levels of 1 µBq/kg or less
 - Sensitivity improvements required for ICPMS, γ counting, NAA
 - Assay techniques have equilibrium assumptions
 - Sample testing doesn't always reflect installed materials
- Prompt μ and environmental γ
 - Shielding and veto solutions are rather robust these days
- $\beta\beta(2\nu)$
 - -For most present experiments, resolutions are sufficient to prevent tail from intruding on peak
 - -Becomes a concern as exposures get larger
 - -Note, resolution, at any experiment scale, is an important issue for signal-to-noise and discovery potential

 Dec. 10, 2020

 Elliott, Background Challenges Panel

As we approach 1 cnt/ton-year, other complications emerge.

- Long-lived Cosmogenic Isotopes
 - -Material and experimental design dependent
 - -Minimize surface exposure for problematic materials
 - -Development of underground fabrication
- Anthropomorphic Activities
 - -Frequently related to notable events, precautions usually can be implemented
- Neutrons (elastic/inelastic reactions, short-lived isotopes)
 - $-(\alpha,n)$ and fission n up to 10 MeV can be shielded
 - –High-energy-μ generated n are a more complicated problem
 - Depth and/or well understood anti-coincidence techniques
 - Rich spectrum, but at low rates it is difficult to discern the actual process, e.g. $(n,n'\gamma)$ reactions which isotope/level
 - Simulation codes still have a lot of uncertainty
- Neutrinos (elastic or charge-current interactions)
 - -Must be considered as detectors get big

